The role of motion sensors in the industrial market

The future of the industrial market is being established by groundbreaking technologies that promise to reveal unique potential and redefineContinue Reading The post The role of motion sensors in the industrial market appeared first on EDN.

The role of motion sensors in the industrial market
The ISM6HG256X IMU sensor.

The future of the industrial market is being established by groundbreaking technologies that promise to reveal unique potential and redefine what is possible. These innovations range from collaborative robots (cobots) and artificial intelligence to the internet of things, digital twins, and cloud computing.

Cobots are not just tools but partners, empowering human workers to achieve greater creativity and productivity together. AI is ushering industries into a new era of intelligence, where data-driven insights accelerate innovation and transform challenges into opportunities.

The IoT is weaving vast, interconnected machines and systems that enable seamless communication and real-time responsiveness like never before. Digital twins bring imagination to life by creating virtual environments where ideas can be tested, refined, and perfected before they touch reality. Cloud computing serves as the backbone of this revolution, offering limitless power and connectivity to drive brave visions forward.

Together, these technologies are inspiring a new industrial renaissance, where innovation, sustainability, and human initiative converge to build a smarter, more resilient world.

The role of sensors

Sensors are the silent leaders driving the industrial market’s transformation into a realm of intelligence and possibility. Serving as the “eyes and ears” of smart factories, these devices unlock the power of real-time data, enabling industries to look beyond the surface and anticipate the future. By continuously sensing pressure, temperature, position, vibration, and more, sensors enable workers to be continuously monitored and bring machines to life, turning them into connected, responsive entities within the industrial IoT (IIoT).

This flow of information accelerates innovation, enables predictive maintenance, and enhances safety. Sensors do not just monitor; they usher in a new era where efficiency meets sustainability, where every process is optimized, and where industries embrace change with confidence. In this industrial landscape, sensors are the catalysts that transform raw data into insights for smarter, faster, and more resilient industries.

Challenges for industrial motion sensing applications

Sensors in industrial environments face several significant challenges. They must operate continuously for years on battery power without failure. Additionally, it is crucial that they capture every critical event to ensure no incidents are missed. Sensors must provide accurate and precise tracking to manage processes effectively. Simultaneously, they need to be compact yet powerful, integrating multiple functions into a small device.

Most importantly, sensors must deliver reliable tracking and data collection in any environment—whether harsh, noisy, or complex—ensuring consistent performance regardless of external conditions. Overcoming these challenges is essential to making factories smarter and more efficient through connected technologies, such as the IIoT and MEMS motion sensors.

MEMS inertial sensors are essential devices that detect motion by measuring accelerations, vibrations, and angular rates, ensuring important events are never missed in an industrial environment. Customers need these motion sensors to work efficiently while saving power and to keep performing reliably even in tough conditions, such as high temperatures.

However, there are challenges to overcome. Sometimes sensors can become overwhelmed, causing them to miss important impact or vibration details. Using multiple sensors to cover different motion ranges can be complicated, and managing power consumption in an IIoT node is also a concern.

There is a tradeoff between accuracy and range: Sensors that measure small movements are very precise but can’t handle strong impacts, while those that detect strong impacts are less accurate. In industrial settings, sensors must be tough enough to handle harsh environments while still providing reliable and accurate data. Solving these challenges is key to making MEMS sensors more effective in many applications.

How the new ST industrial IMU can help

Inertial measurement units (IMUs) typically integrate accelerometers to measure linear acceleration and gyroscopes to detect angular velocity. These devices often deliver space and cost savings while reducing design complexity.

One example is ST’s new ISM6HG256X intelligent IMU. This MEMS sensor is the industry’s first IMU for the industrial market to integrate high-g and low-g sensing into a single package with advanced features such as sensor fusion and edge processing.

The ISM6HG256X addresses key industrial market challenges by integrating a single mechanical structure for an accelerometer with a wide dynamic range capable of capturing both low-g vibrations (16 g) and high-g shocks (256 g) and a gyroscope, effectively eliminating the need for multiple sensors and simplifying system architecture. This compact device leverages embedded edge processing and adaptive self-configurability to optimize performance while significantly reducing power consumption, thereby extending battery life.

Engineered to withstand harsh industrial environments, the IMU reliably operates at temperatures up to 105°C, ensuring consistent accuracy and durability under demanding conditions. Supporting Industry 5.0 initiatives, the sensor’s advanced sensing architecture and edge processing capabilities enable smarter, more autonomous industrial systems that drive innovation.

Unlocking smarter tracking and safety, this integrated MEMS motion sensor is designed to meet the demanding needs of the industrial sector. It enables real-time asset tracking for logistics and shipping, providing up-to-the-minute information on location, status, and potential damage. It also enhances worker safety through wearable devices that detect falls and impacts, instantly triggering emergency alerts to protect personnel.

Additionally, it supports condition monitoring by accurately tracking vibration, shock, and precise motion of industrial equipment, helping to prevent downtime and costly failures. In factory automation, the solution detects unusual vibrations or impacts in robotic systems instantly, ensuring smooth and reliable operation. By combining tracking, monitoring, and protection into one component, industrial operations can achieve higher efficiency, safety, and reliability with streamlined system design.

STMicroelectronics ISM6HG256X IMU, an integrated MEMS motion sensor.
The ISM6HG256X IMU sensor combines simultaneous low-g (±16 g) and high-g (±256 g) acceleration detection with a high-performance precision gyroscope for angular rate measurement. (Source: STMicroelectronics)

As the industrial market landscape evolves toward greater flexibility, sustainability, and human-centered innovation, industrial IMU solutions are aligned with the key drivers shaping the future of the industrial market. IMUs can enable precise motion tracking, reliable condition monitoring, and energy-efficient edge processing while supporting the decentralization of production and enhancing resilience and agility within supply chains.

Additionally, the integration of advanced sensing technologies contributes to sustainability goals by optimizing resource use and minimizing waste. As manufacturers increasingly adopt AI-driven collaboration and advanced technology integration, IMU solutions provide the critical data and reliability needed to drive innovation, customization, and continuous improvement across the industry.

The post The role of motion sensors in the industrial market appeared first on EDN.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow