Expanding power delivery in systems with USB PD 3.1

The Universal Serial Bus (USB) started out as a data interface, but it didn’t take long before progressing to poweringContinue Reading The post Expanding power delivery in systems with USB PD 3.1 appeared first on EDN.

Expanding power delivery in systems with USB PD 3.1
Microchip's MCP19061 USB dual-charging-port board.

The Universal Serial Bus (USB) started out as a data interface, but it didn’t take long before progressing to powering devices. Initially, its maximum output was only 2.5 W; now, it can deliver up to 240 W over USB Type-C cables and connectors, processing power, data, and video. This revision is known as Extended Power Range (EPR), or USB Power Delivery Specification 3.1 (USB PD 3.1), introduced by the USB Implementers Forum. EPR uses higher voltage levels (28 V, 36 V, and 48 V), which at 5 A will deliver power of 140 W, 180 W, and 240 W, respectively.

USB PD 3.1 has an adjustable voltage supply mode, allowing for intermediate voltages between 9 V and the highest fixed voltage of the charger. This allows for greater flexibility by meeting the power needs of individual devices. USB PD 3.1 is backward-compatible with previous USB versions including legacy at 15 W (5 V/3 A) and the standard power range mode of below 100 W (20 V/5 A).

The ability to negotiate power for each device is an important strength of this specification. For example, a device consumes only the power it needs, which varies depending on the application. This applies to peripherals, where a power management process allows each device to take only the power it requires.

The USB PD 3.1 specification found a place in a wide range of applications, including laptops, gaming stations, monitors, industrial machinery and tools, small robots and drones, e-bikes, and more.

Microchip USB PD demo board

Microchip provides a USB PD dual-charging-port (DCP) demonstration application, supporting the USB PD 3.1 specification. The MCP19061 USB PD DCP reference board (Figure 1) is pre-built to show the use of this technology in real-life applications. The board is fully assembled, programmed, and tested to evaluate and demonstrate digitally controlled smart charging applications for different USB PD loads, and it allows each connected device to request the best power level for its own operation.

Microchip's MCP19061 USB dual-charging-port board.
Figure 1: MCP19061 USB DCP board (Source: Microchip Technology Inc.)

The board shows an example charging circuit with robust protections. It highlights charge allocation between the two ports as well as dynamically reconfigurable charge profile availability (voltage and current) for a given load. This power-balancing feature between ports provides better control over the charging process, in addition to delivering the right amount of power to each device.

The board provides output voltages from 3 V to 21 V and output currents from 0.5 A to 3 A. Its maximum input voltage range is from 6 V to 18 V, with 12 V being the recommended value.

The board comes with firmware designed to operate with a graphical user interface (GUI) and contains headers for in-circuit serial programming and I2C communication. An included USB-to-serial bridging board (such as the BB62Z76A MCP2221A breakout board USB) with the GUI allows different configurations to be quickly tested with real-world load devices charging on the two ports. The DCP board GUI requires a PC with Microsoft Windows operating system 7–11 and a USB 2.0 port. The GUI then shows parameter and board status and faults and enables user configuration.

DCP board components

Being a port board with two ports, there are two independent USB PD channels (Figure 2), each with their own dedicated analog front end (AFE). The AFE in the Microchip MCP19061 device is a mixed-signal, digitally controlled four-switch buck-boost power controller with integrated synchronous drivers and an I2C interface (Figure 3).

Block diagram shows two independently managed USB PD channels on Microchip's MCP19061-powered DCP board.
Figure 2: Two independently managed USB PD channels on the MCP19061-powered DCP board (Source: Microchip Technology Inc.)
Block diagram of Microchip's MCP19061 four-switch buck-boost device.
Figure 3: Block diagram of the MCP19061 four-switch buck-boost device (Source: Microchip Technology Inc.)

Moreover, one of the channels features the Microchip MCP22350 device, a highly integrated, small-format USB Type-C PD 2.0 controller, whereas the other channel contains a Microchip MCP22301 device, which is a standalone USB Type-C PD port controller, supporting the USB PD 3.0 specification.

The MCP22350 acts as a companion PD controller to an external microcontroller, system-on-chip or USB hub. The MCP22301 is an integrated PD device with the functionality of the SAMD20 microcontroller, a low-power, 32-bit Arm Cortex-M0+ with an added MCP22350 PD media access control and physical layer.

Each channel also has its own UCS4002 USB Type-C port protector, guarding from faults but also protecting the integrity of the charging process and the data transfer (Figure 4).

Traditionally a USB Type-C connector embeds the D+/D– data lines (USB2), Rx/Tx for USB3.x or USB4, configuration channel (CC) lines for charge mode control, sideband-use (SBU) lines for optional functions, and ground (GND). The UCS4002 protects the CC and D+/D– lines for short-to-battery. It also offers battery short-to-GND (SG_SENS) protection for charging ports.

Integrated switching VCONN FETs (VCONN is a dedicated power supply pin in the USB Type-C connector) provide overvoltage, undervoltage, back-voltage, and overcurrent protection through the VCONN voltage. The board’s input rail includes a PMOS switch for reverse polarity protection and a CLC EMI filter. There are also features such as a VDD fuse and thermal shutdown, enabled by a dedicated temperature sensor, the MCP9700, which monitors the board’s temperature.

Block diagram of Microchip's UCS4002 USB port protector device.
Figure 4: Block diagram of the UCS4002 USB port protector device (Source: Microchip Technology Inc.)

The UCS4002 also provides fault-reporting configurability via the FCONFIG pin, allowing users to configure the FAULT# pin behavior. The CC, D+/D –, and SG_SENS pins are electrostatic-discharge-protected to meet the IEC 61000-4-2 and ISO 10605 standards.

The DCP board includes an auxiliary supply based on the MCP16331 integrated step-down switch-mode regulator providing a 5-V voltage and an MCP1825 LDO linear regulator providing a 3.3-V auxiliary voltage.

Board operation

The MCP19061 DCP board shows how the MCP19061 device operates in a four-switch buck-boost topology for the purpose of supplying USB loads and charging them with their required voltage within a permitted range, regardless of the input voltage value. It is configured to independently regulate the amount of output voltage and current for each USB channel (their individual charging profile) while simultaneously communicating with the USB-C-connected loads using the USB PD stack protocols.

All operational parameters are programmable using the two integrated Microchip USB PD controllers, through a dynamic reconfiguration and customization of charging operations, power conversion, and other system parameters. The demo shows how to enable the USB PD programmable power supply fast-charging capability for advanced charging technology that can modify the voltage and current in real time for maximum power outputs based on the device’s charging status.

The MCP19061 device works in conjunction with both current- and voltage-sense control loops to monitor and regulate the load voltage and current. Moreover, the board automatically detects the presence or removal of a USB PD–compliant load.

When a USB PD–compliant load is connected to the USB-C Port 1 (on the PCB right side; this is the higher one), the USB communication starts and the MCP19061 DCP board displays the charging profiles under the Port 1 window.

If another USB PD load is connected to the USB-C Port 2, the Port 2 window gets populated the same way.

The MCP19061 PWM controller

The MCP19061 is a highly integrated, mixed-signal four-switch buck-boost controller that operates from 4.5 V to 36 V and can withstand up to 42 V non-operating. Various enhancements were added to the MCP19061 to provide USB PD compatibility with minimum external components for improved calibration, accuracy, and flexibility. It features a digital PWM controller with a serial communication bus for external programmability and reporting. The modulator regulates the power flow by controlling the length of the on and off periods of the signal, or pulse widths.

The operation of the MCP19061 enables efficient power conversion with the capability to operate in buck (step-down), boost (step-up), and buck-boost topologies for various voltage levels that are lower, higher, or the same as the input voltage. It provides excellent precision and efficiency in power conversions for embedded systems while minimizing power losses. Its features include adjustable switching frequencies, integrated MOSFET drivers, and advanced fault protection. The operating parameters, protection levels, and fault-handling procedures are supervised by a proprietary state machine stored in its nonvolatile memory, which also stores the running parameters.

Internal digital registers handle the customization of the operating parameters, the startup and shutdown profiles, the protection levels, and the fault-handling procedures. To set the output current and voltage, an integrated high-accuracy reference voltage is used. Internal input and output dividers facilitate the design while maintaining high accuracy. A high-accuracy current-sense amplifier enables precise current regulation and measurement.

The MCP19061 contains three internal LDOs: a 5-V LDO (VDD) powers internal analog circuits and gate drivers and provides 5 V externally; a 4-V LDO (AVDD) powers the internal analog circuitry; and a 1.8-V LDO supplies the internal logic circuitry.

The MCP19061 is packaged in a 32-lead, 5 × 5-mm VQFN, allowing system designers to customize application-specific features without costly board real estate and additional component costs. A 1-MHz I2C serial bus enables the communication between the MCP19061 and the system controller.

The MCP19061 can be programmed externally. For further evaluation and testing, Microchip provides an MCP19061 dedicated evaluation board, the EV82S16A.

The post Expanding power delivery in systems with USB PD 3.1 appeared first on EDN.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow