Motor drivers advance with new features

Industrial automation, robotics, and electric mobility are increasingly driving demand for improved motor driver ICs as well as solutions thatContinue Reading The post Motor drivers advance with new features appeared first on EDN.

Motor drivers advance with new features
The Würth Elektronik and Nexperia NEVB-MTR1-KIT1 motor drive evaluation kit.

Industrial automation, robotics, and electric mobility are increasingly driving demand for improved motor driver ICs as well as solutions that make it easier to design motor drives. With energy consumption being a key factor in these applications, developers are looking for motor drivers that offer higher efficiency and lower power consumption.

At the same time, integrating motor drivers into existing systems is becoming more challenging, as they need to work seamlessly with a variety of motors and control algorithms such as trapezoidal, sinusoidal, and field-oriented control (FOC), according to Global Market Insights Inc.

The average electric vehicle uses 15–20 motor drivers across a variety of systems, including traction motors, power steering, and brake systems, compared with eight to 12 units in internal-combustion-engine vehicles, and industrial robots typically use six to eight motor drivers for joint articulation, positioning, and end-effector control, according to Emergen Research.

The motor driver IC market is expected to grow at a compound annual growth rate of 6.8% from 2024 to 2034, according to Emergen Research, driven by industrial automation, EVs, and smart consumer electronics. Part of this growth is attributed to Industry 4.0 initiatives that drive the demand for more advanced motor control solutions, including the use of artificial intelligence and machine-learning algorithms in motor control systems.

Emergen Research also reports that silicon carbide and gallium nitride (GaN) materials are gaining traction in high-power applications thanks to their higher switching characteristics compared with silicon-based solutions.

Other trends include the growing demand for precise motor control, the integration of advanced sensorless control, and low electromagnetic interference (EMI), according to the market research firms.

Here are a few examples of new motor drivers for industrial and automotive applications, as well as development solutions such as software, reference designs, and evaluation kits that help ease the development of motor drives.

Motor drivers

Melexis recently launched the MLX81339, a configurable motor driver with a pulse-width modulation (PWM)/serial interface for a range of industrial applications. This motor driver IC is designed for compact, three-phase brushless DC (BLDC) and stepper motor control up to 40 W in industrial applications such as fans, pumps, and positioning systems.

The motor driver targets a range of markets, including smart industrial and consumer sectors, in applications such as positioning motors, thermal valves, robotic actuators, residential and industrial ventilation systems, and dishwashing pumps. The MLX81339 is also qualified for automotive fan and blower applications.

A key feature of this motor control IC is the programmable flash memory, which enables full application customization. Designed for three-phase BLDC or bipolar stepper motors, these advanced drivers use silent FOC. It delivers reliable startup, stopping, and precise speed control from low to maximum speed, Melexis said.

The MLX81339 motor driver supports control up to 20 W at 12 V and 40 W at 24 V, integrating a three-phase driver with a configurable current limit up to 3 A, as well as under-/overvoltage, overcurrent, and overtemperature protection. Other key specifications include a wide supply voltage range of 6 V to 26 V and an operating temperature range of –40°C to 125°C (junction temperature up to 150°C).

The MLX81339 also incorporates 8× general-purpose I/Os and several interfaces, including PWM/FG, I2C, UART, and SPI, for easy integration into both legacy and smart systems. It also supports both sensor-based and sensorless control.

Melexis offers the Melexis StartToRun web tool to accelerate motor driver prototyping, eliminating engineering tasks by generating configuration files based on simple user inputs. In addition to the motor and electrical parameters, the tool includes prefilled mechanical values.

The MLX81339, housed in QFN24 and SO8-EP packages, is available now. A code-free and configurable MLX80339 for rapid deployment will be released in the first quarter of 2026.

Melexis’s MLX81339 motor driver.
Melexis’s MLX81339 motor driver (Source: Melexis)

Earlier this year, STMicroelectronics introduced the VNH9030AQ, an integrated full-bridge DC motor driver with high-side and low-side MOSFET gate drivers, real-time diagnostics, and protection against overvoltage transients, undervoltage, short-circuit conditions, and cross-conduction, aimed at reducing design complexity and cost. Delivering greater flexibility to system designers, the MOSFETs can be configured either in parallel or in series, allowing them to be used in systems with multiple motors or to meet other specific requirements.

The integrated non-dissipative current-sense circuitry monitors the current flowing through the device to distinguish each motor phase, contributing to the driver’s efficiency. The standby power consumption is very low over the full operating temperature range, easing use in zonal controller platforms, ST said.

This DC motor driver can be used in a range of automotive applications, including functional safety. The driver also provides a dedicated pin for real-time output status, easing the design into functional-safety and general-purpose low-/mid-power DC-motor-driven applications while reducing the requirements for external circuitry.

With an RDS(on) of 30 mΩ per leg, the VNH9030AQ can handle mid- and low-power DC-motor-driven applications such as door-control modules, washer pumps, powered lift gates, powered trunks, and seat adjusters.

The driver is part of a family of devices that leverage ST’s latest VIPower M0-9 technology, which permits monolithic integration of power and logic circuitry. All products, including the VNH9030AQ, are housed in a 6 × 6-mm, thermally enhanced triple-pad QFN package. The package is designed for optimal underside cooling and shares a common pinout to ease layout and software reuse.

The VNH9030AQ is available now. ST also offers a ready-to-use VNH9030AQ evaluation board and the TwisterSim dynamic electro-thermal simulator to simulate the motor driver’s behavior under various operating conditions, including electrical and thermal stresses.

STMicroelectronics’ VNH9030AQ half-bridge DC motor driver.
STMicroelectronics’ VNH9030AQ half-bridge DC motor driver (Source: STMicroelectronics)

Targeting both automotive and industrial applications, the Qorvo Inc. 160-V three-phase BLDC motor driver also aims to reduce solution size, design time, and cost with an integrated power manager and configurable analog front end (AFE). The ACT72350 160-V gate driver can replace as many as 40 discrete components in a BLDC motor control system, and the configurable AFE enables designers to configure their exact sensing and position detection requirements.

The ACT72350 includes a configurable power manager with an internal DC/DC buck converter and LDOs to support internal components and serve as an optional supply for the host microcontroller (MCU). In addition, by offering a wide, 25-V to 160-V input range, designers can reuse the same design for a variety of battery-operated motor control applications, including power and garden tools, drones, EVs, and e-bikes.

The ACT72350 provides the analog circuitry needed to implement a BLDC motor control system and can be paired with a variety of MCUs, Qorvo said. It provides high efficiency via programmable propagation delay, precise current sensing, and BEMF feedback, as well as differentiated features for safety-critical applications.

The SOI-based motor driver is available now in a 9.0 × 9.0-mm, 57-pin QFN package. An evaluation kit is available, along with a model of the ACT72350 in Qorvo’s QSPICE circuit simulation software at www.qspice.com.

Qorvo’s ACT72350 three-phase BLDC motor driver.
Qorvo’s ACT72350 three-phase BLDC motor driver (Source: Qorvo Inc.)

Software, reference designs, and evaluation kits

Motor driver IC and power semiconductor manufacturers also deliver software suites, reference designs, and development kits to simplify motor drive design and development. A few examples include Power Integrations’ MotorXpert software, Efficient Power Conversion Corp.’s (EPC’s) GaN-based motor driver reference design, and a modular motor driver evaluation kit developed by Würth Elektronik and Nexperia.

Power Integrations continues to enhance its MotorXpert software for its BridgeSwitch and BridgeSwitch-2 half-bridge motor driver ICs. The latest version, MotorXpert v3.0, enables FOC without shunts and their associated sensors. It also adds support for advanced modulation schemes and features V/F and I/F control to ensure startup under any load condition.

Designed to simplify single- and three-phase sensorless motor drive designs, the v3.0 release adds a two-phase modulation scheme, suited for high-temperature environments, reducing inverter switching losses by 33%, according to the company. It allows developers to trade off the temperature of the inverter versus torque ripple, particularly useful in applications such as hot water circulation pumps, reducing heat-sink requirements and enclosure cost, the company said.

The software also delivers a five-fold improvement to the waveform visualization tool and an enhanced zoom function, providing more data for motor tuning and debugging. The host-side application includes a graphical user interface with Power Integrations’ digital oscilloscope visualization tool to make it easy to design and configure parameters and operation and to simplify debugging. Also easing development are parameter tool tips and a tuning assistant.

The software suite is MCU-agnostic and includes a porting guide to simplify deployment with a range of MCUs. It is implemented in the C language to MISRA standards.

Power Integrations said development time is greatly reduced by the included single- and three-phase code libraries with sensorless support, reference designs, and other tools such as a power supply design and analysis tool. Applications include air conditioning fans, refrigerator compressors, fluid pumps, washing machine and dryer drums, range hoods, industrial fans, and heat pumps.

Power Integrations’ MotorXpert software suite.
Power Integrations’ MotorXpert software suite (Source: Power Integrations)

EPC claims the first GaN-based motor driver reference design for humanoid robots with the launch of the EPC91118 reference design for motor joints. The EPC91118 delivers up to 15 ARMS per phase from a wide input DC voltage, ranging from 15 V to 55 V, in an ultra-compact, circular form factor.

The reference design is optimized for space-constrained and weight-sensitive applications such as humanoid limbs and drone propulsion. It shrinks inverter size by 66% versus silicon, EPC said, and eliminates the need for electrolytic capacitors due to the GaN ICs and high-frequency operation. The high switching frequency instead allows the use of smaller MLCCs.

The reference design is centered around the EPC23104 ePower stage IC, a monolithic GaN IC that enables higher switching frequencies and reduced losses. The power stage is combined with current sensing, a rotor shaft magnetic encoder, an MCU, RS-485 communications, and 5-V and 3.3-V power supplies on a single board that fits within a 32-mm-diameter footprint (55-mm-diameter outer frame; 32-mm-diameter inverter).

EPC’s EPC91118 motor driver reference design.
EPC’s EPC91118 motor driver reference design (Source: Efficient Power Conversion Corp.)

Aimed at faster development of motor controllers, Würth Elektronik and Nexperia have collaborated on the NEVB-MTR1-KIT1 modular motor driver evaluation kit. The kit can be configured for use in under two minutes and is powered via USB-C.

The companies highlight the modularity of the evaluation board that can be adapted to a wide range of motors, control algorithms, and test setups, enabling faster optimization as well as faster iterations and testing. With an open architecture, the kit enables MCUs and components to be easily exchanged, and the open-source firmware allows developers to quickly adapt and develop motor controllers under real-world conditions, according to the companies.

The kit includes a three-phase inverter board, a motor controller board, an MCU development board, pre-wired motor connections, and a BLDC motor. A key feature is the high-current connectors integrated by Würth Elektronik, which enable evaluations up to 1 kW at 48 V.

The demands on dynamics, fault tolerance, and energy efficiency in drive systems are rising steadily, resulting in increasingly more complex motor control system design, according to the companies. The selection of the right switches (MOSFETs and IGBTs), gate drivers, and protection circuits is critical to ensure lower switching losses, better thermal behavior, and stable dynamics.

The behavior of the components must be carefully validated under real-world conditions, taking into consideration factors such as parasitic elements, switching transients, and EMI, according to the companies. The modular kit helps with this by enabling different motors and control concepts to be evaluated.

The Würth Elektronik and Nexperia NEVB-MTR1-KIT1 motor drive evaluation kit.
The Würth Elektronik and Nexperia NEVB-MTR1-KIT1 motor drive evaluation kit (Source: Würth Elektronik)

The post Motor drivers advance with new features appeared first on EDN.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow