How TMDs can transform semiconductor manufacturing

Transition metal dichalcogenides (TMDs) possess numerous properties beneficial to semiconductor device manufacturing. The post How TMDs can transform semiconductor manufacturing appeared first on EDN.

How TMDs can transform semiconductor manufacturing

ARE YOU TIRED OF LOW SALES TODAY?

Connect to more customers on doacWeb

Post your business here..... from NGN1,000

WhatsApp: 09031633831

ARE YOU TIRED OF LOW SALES TODAY?

Connect to more customers on doacWeb

Post your business here..... from NGN1,000

WhatsApp: 09031633831

ARE YOU TIRED OF LOW SALES TODAY?

Connect to more customers on doacWeb

Post your business here..... from NGN1,000

WhatsApp: 09031633831

While semiconductors remain in high demand, electronics engineers must stay abreast of associated developments that could eventually affect their work. Case in point: significant advancements in transition metal dichalcogenides (TMDs).

These two-dimensional materials are of particular interest to electronics engineers due to their structural phase and chemical composition; they possess numerous properties advantageous to electronic devices.

The 2D materials like TDM are prominent in the future semiconductor manufacturing landscape. Source: Nature

The ongoing semiconductor shortage has caused some engineers to delay projects or alter plans to acquire readily available supplies rather than those that are challenging to source. However, physical resource concentrations are more significant contributors to the shortage than actual scarcity.

When most of the critical raw materials used in semiconductor production come from only a few countries or regions, supply chain constraints happen frequently.

TDM learning curve

If it was possible to make the materials locally rather than relying on outside sources, electronics engineers and managers would enjoy fewer workflow hiccups. So, researchers are focusing on that possibility while exploring TMD capabilities. They are learning how to grow these materials in a lab while overcoming notable challenges.

One concern was making the growth occur without the thickness irregularities that often negatively affect other 2D materials. Therefore, this research team designed a shaped structure that controls the TMD’s kinetic activities during growth.

Additionally, they demonstrated an option to facilitate layer-by-layer growth by creating physical barriers from chemical compound substrates, forcing the materials to grow vertically. The researchers believe this approach could commercialize the production of these 2D materials. Their problem-solving efforts could also encourage others to follow their lead as they consider exploring how to produce and work with TMDs.

Semiconductor manufacturing is a precise process requiring many specific steps. For example, fluorinated gases support everything from surface-etching activities to process consistency. Although many production specifics will remain constant for the foreseeable future, some researchers are interested in finding feasible alternatives.

So, while much of their work centers around furthering the development of next-generation computer chips, succeeding in that aim may require prioritizing different materials, including TMDs. People have used silicon for decades. Although it’s still the best choice for some projects, electronics engineers and other industrial experts see the value in exploring other options.

Learning more about TMDs will enable researchers to determine when and why the materials could replace silicon.

TDM’s research phase

In one recent case, a team explored TMD defects and how these materials could impact semiconductor performance. Interestingly, the outcomes were not always adverse because some imperfections made the material more electrically conductive.

Another research phase used photoluminescence to verify the light frequencies emitted by the TMDs. One finding was that specific frequencies would characterize five TMDs with defects called chalcogen vacancies.

An increased understanding of common TMD defects and their impacts will allow engineers to determine the best use cases more confidently. Similarly, knowing effective and efficient ways to detect those flaws will support production output and improve quality control.

These examples illustrate why electronics engineers and managers are keenly interested in TDMs and their role in future semiconductors. Even if some efforts are not commercially viable, those involved will undoubtedly learn valuable details that shape their future progress.

Ellie Gabel is a freelance writer as well as an associate editor at Revolutionized.

 

 

Related Content

The post How TMDs can transform semiconductor manufacturing appeared first on EDN.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow