A short primer on EDA’s role in IC design

The ultimate value that the EDA industry delivers to the global semiconductor industry is almost incalculable. The post A short primer on EDA’s role in IC design appeared first on EDN.

A short primer on EDA’s role in IC design






Analysts estimate that the global market for semiconductors will exceed $600 billion in 2025 and hit the $1 trillion mark by 2030, suggesting a CAGR of over 8%. It’s no surprise that the drivers behind this growth include the semiconductor devices and systems needed to support the rapidly growing segments like artificial intelligence (AI), automotive industries (autonomous driving and EVs), data centers and cloud computing, communications, and consumer electronics.

Electronic design automation (EDA) plays a critical role in the growth of the global semiconductor industry. Yet it’s relatively unknown outside of those who participate directly in the industry. In order to understand the value of EDA, it helps to grasp where EDA fits within the semiconductor supply chain.

Semiconductor value chain

The semiconductor supply chain is both complex and globally distributed. If we consider the portion of the supply chain from design through finished semiconductor products—packaged chips and systems, for example—it comprises the parts shown below.

Figure 1 The semiconductor supply chain encompasses product specification, chip design and verification, manufacturing and assembly, and test and packaging. Source: Bob Smith

Semiconductor companies are the primary users of EDA tools required for designing chips that may contain upward of billions of transistors. In addition to EDA tools, these companies also use semiconductor intellectual property (IP) blocks that are pre-designed and characterized functional blocks to help simplify the design process.

The beginning of the process that feeds the supply chain is the development of new chip designs. Leading into design is the upfront planning, including assessing the target market(s) and market timing requirements—both too early and too late must be avoided—and functional and performance characteristics. Once the plan is in place, the chip design process begins.

Chip design is a complex process that starts with architectural planning and detailed specifications on chip functionality and performance (Figure 2). The next steps take the design through different levels of abstraction and verification. All the blocks in the diagram are served by EDA vendors providing many different EDA products.

Figure 2 Chip design and verification are complex and require several steps before the design can be handed off to manufacturing. Source: Bob Smith

Register transfer level (RTL) design creates a software model of the chip using a hardware description language (HDL) such as Verilog or VHDL. This design must then be rigorously verified using a simulator, and in some cases, the use of hardware-assisted verification known as hardware emulators or FPGA prototypes. Once the software-based design is verified, the next step is another transformation.

Synthesis takes the RTL software design and transforms it into a logic-level netlist. The netlist is a collection of logical components and blocks interconnected to form the circuitry that will perform the chip’s functions. Additional verifications steps are performed after synthesis to ensure that the netlist works as expected.

Once the netlist is verified, the next step is the creation of the actual physical geometries used to define the structures (transistors) and interconnects (wires) that will be manufactured. This step is called place and route. “Place” refers to locating the functional blocks on the chip and “route” speaks to generating the wires that interconnect the blocks.

Physical design is followed by exhaustive verification steps that include checking functionality and timing. Other checks such as power and thermal integrity and design and electrical rule checking assess that requirements for the target semiconductor process have been met. These verification steps are the “gatekeepers” that must be satisfied before the design can be released to manufacturing.

The manufacturing industry includes providers of the equipment and materials that are used to manufacture semiconductor chips. Once manufactured, the fabricated chips are handed off to companies that specialize in the next step of assembly, test, and packaging.

In this final step before the chips can be delivered to market, these companies test the chips and then assemble them into packages. The packaged chips then head to distribution channels that ultimately deliver the chips to product manufacturers to assemble into their products.

The value of EDA

The total revenue contribution of these segments of the supply chain in 2024 was approximately $420 billion. In this same period, the EDA segment generated about $20 billion or ~ 5% of the total revenue. While this sounds like a small piece of the puzzle, the value of EDA goes far beyond what revenue numbers convey.

Where is this “unseen” value in EDA coming from? The answer lies in the complexities of the design process itself, and the driving need to keep up with the competition.

Modern chip design is both complex and challenging. The most sophisticated chips may contain tens of billions of transistors—far beyond the realm of unaided manual design.

Moreover, time to market is everything in the highly competitive market. The ability to design and deliver a new chip to address a market need on time and with the features that will ensure success in the end market is a daunting task. Design teams invest in the EDA and verification tools that help them optimize these tradeoffs.

The cost of designing and verifying a leading-edge chip can be in the hundreds of millions of dollars to go from concept to design completion and release to manufacturing. A design flaw or late delivery can mean the end of a promising new chip and lead to hundreds of millions of dollars or more in unrecoverable costs. Failure is not an option.

EDA tools are the engines that drive the design process and allow semiconductor manufacturers to meet ever-shrinking market windows. The EDA tools themselves and the methodology and flows (“recipes”) that each company develops around them are regarded as highly valuable trade secrets.

While time to market is at the top of the list, there are other considerations that EDA tools also address. These can include product safety, product lifecycle and suitability for specialized applications for markets such as vehicles, medical devices, and defense and aerospace. All these requirements mandate sophisticated design and verification tools that can be applied to ensure designs meet these needs—and deliver on time.

EDA plays another valuable role in the chain as a key driver in bringing new process technologies to market. Development of new semiconductor processes relies on tight partnerships between the process developers and the EDA companies.

It’s expensive to bring a new process to the point where it has been characterized and dialed-in so that it can deliver the yield and performance that potential customers will demand. But to be able to accept designs, semiconductor manufacturing must be able to support the customers with verified EDA tools and flows that will support the new technology. No tool support, no customers.

Semiconductor design is at the front end of the supply chain and the EDA industry provides the tools that are essential for turning out today’s complex chip designs. Without availability of these design automation tools, the new innovations and products that drive the global semiconductor industry forward would come to a screeching halt and the supply chain would wither and atrophy.

Value beyond licensing fee

The insatiable demand for new products from the electronics industry keeps intense pressure on the semiconductor manufacturers to deliver the future. In turn, this demands that the EDA industry continually deliver new tools, technologies and functionality that support the ongoing move to the future. Simply said, there would be no new products or growth in the global electronics market without EDA. Measuring the EDA market solely on revenue contribution vastly understates the value that EDA delivers to the global semiconductor industry.

The ultimate value that the EDA industry delivers to the global semiconductor industry is almost incalculable. Certainly, it is far beyond the licensing and maintenance revenues that the industry generates.

Robert (Bob) Smith is executive director of the ESD Alliance, a SEMI technology community, representing members in the electronic system and semiconductor design ecosystem responsible for its management and operations.

 

Related Content

The post A short primer on EDA’s role in IC design appeared first on EDN.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow